On the distance from a matrix polynomial to matrix polynomials with some prescribed eigenvalues
نویسندگان
چکیده
منابع مشابه
On the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملon the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
consider an n × n matrix polynomial p(λ). a spectral norm distance from p(λ) to the set of n × n matrix polynomials that havea given scalar µ ∈ c as a multiple eigenvalue was introducedand obtained by papathanasiou and psarrakos. they computedlower and upper bounds for this distance, constructing an associated perturbation of p(λ). in this paper, we extend this resultto the case of two given di...
متن کاملThe distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
For a matrix polynomial P (λ) and a given complex number μ, we introduce a (spectral norm) distance from P (λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated pertur...
متن کاملOn the distance from a weakly normal matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue
متن کامل
On robust matrix completion with prescribed eigenvalues
Matrix completion with prescribed eigenvalues is a special kind of inverse eigenvalue problems. Thus far, only a handful of specific cases concerning its existence and construction have been studied in the literature. The general problem where the prescribed entries are at arbitrary locations with arbitrary cardinalities proves to be challenging both theoretically and computationally. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2018
ISSN: 0024-3795
DOI: 10.1016/j.laa.2018.01.010